BBAMEM 75381

Synthetic inositol 1,3,4,5-tetrakisphosphate analogs and their effect on the binding to microsomal fraction of rat cerebellum

Yuichi Kimura ¹, Takashi Kanematsu ¹, Yutaka Watanabe ², Shoichiro Ozaki ², Toshitaka Koga ¹ and Masato Hirata ¹

Department of Biochemistry, Faculty of Dentistry, Kyushu University, Fukuoka (Japan) and ² Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama (Japan)

(Received 19 March 1991)

Key words: Inositol 1,3,4,5-tetrakisphosphate; Receptor; (Rat cerebellar membrane)

Binding activity of [3 H]inositol 1,3,4,5-tetrakisphosphate (InsP $_4$) was characterized with rat cerebellar membranes. Two types of InsP $_4$ analog with either the aminobenzoyl or the aminocyclohexanecarbonyl group on the 2nd position of InsP $_4$ have been synthesized and their effects on the binding activity were also examined. [3 H]InsP $_4$ binding was gradually displaced by increasing amounts of unlabeled InsP $_4$, with an IC $_{50}$ of 60–170 nM, depending on the pH values. The binding was sharply increased at acidic pH and millimolar concentrations of Ca $^{2+}$, this being in clear contrast with [3 H]InsP $_3$ binding noted in the same species of tissue. Heparin inhibited the binding, with an IC $_{50}$ of 1.7, 3 or 20 μ g/ml at pH 8.3, 7.2 or 5.0, respectively. Adenine nucleotide inhibited the binding more potently than did [3 H]InsP $_3$ binding. InsP $_4$ analogs were as effective as InsP $_4$ in displacing [3 H]InsP $_4$ from rat cerebellar membranes, thereby indicating that the 2nd hydroxl group may not be involved in recognition of InsP $_4$ by its binding sites.

Introduction

Inositol 1,4,5-trisphosphate (InsP₃), a product from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C, is well known to cause Ca²⁺ release from intracellular Ca²⁺ store site(s) [1]. InsP₃ is phophorylated at position 3 by a specific InsP₃ 3-kinase to yield inositol 1,3,4,5-tetrakisphosphate (InsP₄) [2]. Irvine and Moor [3] reported that microinjection of InsP₄ into sea urchin eggs caused the fertilization envelope, depending on both the presence of extracellular Ca²⁺ and co-injection with a Ca²⁺-mobilizing compound, inositol 2,4,5-trisphosphate. They suggested that InsP₄ may control cellular Ca²⁺ homeostasis through the plasma membrane. Higashida and Brown [4] reported that injection of InsP₄ into neuroblastoma × glioma NG108-15 hybrid cells evoked an inward cur-

Abbreviations: $InsP_4$, inositol 1,3,4.5-tetrakisphosphate; $InsP_3$, inositol 1,4,5-trisphosphate; BPG, bisphosphoglyceric acid; PP_i , pyrophosphate.

Correspondence: M. Hirata, Department of Biochemistry, Faculty of Dentistry, Kyushu University, Fukuoka 812, Japan.

rent with a reversal potential of about -20 mV, thereby indicating that $InsP_4$ increased the non-specific cation conductance. In addition, $InsP_4$ is reported to be the activator for the K^+ channel with $InsP_3$ in mouse lacrimal acinar cells [5], protein phosphatase with $InsP_3$ in the rat brain [6], accumulation of Ca^{2+} into Ca^{2+} store site(s) in rat liver cells or cerebellum [7,8], or release of Ca^{2+} from the microsome in the rat cerebellum [9]. Thus, a genenal consensus concerning the function of $InsP_4$ has not been reached. But it was reported that specific binding site(s) for $InsP_4$ are present in the microsomal fraction [10,11], hence, $InsP_4$ is expected to exert its effects on Ca^{2+} homeostasis through the specific binding site(s).

Recently, we synthesized a series of InsP₃ analogs, in which the bulky substituent such as 4-azidobenzoyl (designated as analog 195), 4-(5-benzamidoethyl-2-hydroxy-phenylazo)benzoyl (204), 4-aminocyclohexane-carboyl (206) or 4-aminobenzoyl group (209) are coupled with the 2-hydroxyl group of InsP₃. Using these analogs, we found that such modifications reduced little the ability of the analogs to interact with receptors and with metabolic enzymes [12,13]. We have now synthesized two types of InsP₄ analog which correspond to InsP₃ analogs of 206 and 209 [14], and their

effects on [³H]InsP₄-binding was examined. As little is known of the characteristics of the InsP₄-binding activity, we also examined this point before attending to the effects of InsP₄ analogs. The effects of InsP₄ analogs on the phosphatase activities were already described [14].

Materials and Methods

Materials

[³H]InsP₃ (specific radioactivity, 754.8 GBq/mmol) and [³H]InsP₄ (specific radioactivity, 629 GBq/mmol) were obtained from DuPont-New England Nuclear. D-InsP₃ and DL-InsP₄ were chemically synthesized, as described [15,16]. D-InsP₄ was obtained from Calbiochem. All other reagents were of the highest grade available.

Assay for [3H]InsP₄ binding activity of rat cerebellar membranes

Rat cerebellums were homogenized in a glass homogenizer with a Teflon pescle in a solution containing 50 mM Mes buffer (pH 5.0) and 1 mM EDTA. The homogenate was centrifuged at $1500 \times g$ for 10 min, followed by centrifugation at $40\,000 \times g$ for 20 min and washed once with the same buffer. 50 mM Hepes buffer or Tris-HCl buffer was also used in the place of Mes buffer, depending on the experiments. The washed pellet was suspended in the same buffer and assayed for [3H]InsP₄ binding as follows: the mixture (0.5 ral) contained 50 mM pH-buffer (Mes, Hepes or Tris-HCl), 1 mM EDTA, 1.18 nM [3 H]InsP₄ and approx. 400 μ g membrane fraction and incubated on ice for 15 min, followed by passing the mixture through a glass-fiber filter (Whatman GF/C), under vacuum. The filter was washed with 2 ml of the buffer, dried and counted for radioactivity. The protein concentration was determined by the method of Lowry et al. [17] using bovine serum albumin as a standard.

Chemical synthesis of InsP₄ analogs (See Fig. 4 for structural formulae)

- (i) 2-O-(4-Aminobenzoyl)-myo-inositol-1,3,4,5-tetraphosphate (KG-194): a solution of 2-O-(4'-nitrobenzoyl)-6-benzyl-1,3,4,5-tetrakis (1'-5'-dihydrobenzodioxaphosphelynyl)myo-inositol (271 mg) (Ozaki, S., Watanabe, Y. and Koga, Y., unpublished data) and 5% paladium-carbon (Pd/C) (20 mg) in 10 ml of methanol/water (4:1) (v/v) was stirred under hydrogen gas for 24 h. After filtration of the mixture to remove Pd/C, the filtrate was evaporated and chromatographed using an Avicel column (CC-31) to afford KG-194 (79.9 mg, 50%).
- (ii) 2-O-(4-Aminocyclohexanecarbonyl)*myo*-inositol-1,3,4,5-tetraphosphate (KG-210): a mixture of KG-194 (14.9 mg, 0.0221 mmol) and rutenium oxide (21.5 mg,

0.162 mmol) in water (3.75 ml) and hydrogen gas (80 atm) were charged in a 50 ml autoclave and heated at 60° C for 2 h. The catalyst was filtered and the filtrate evaporated. The residue was chromatographed using a cellulose column and eluents (n-PrOH/conc. NH₃ aq./H₂O, 5:4:1) to give KG-210 (14.3 mg, 96.8%). $R_{\rm F}$: 0.24 (n-PrOH/conc NH₃ aq./H₂O, 5:5:1).

Results

Characteristics of [3H]InsP₄ binding

Rat cerebellum membrane fractions were used for the assay of [3 H]InsP $_4$ binding. Binding of [3 H]InsP $_4$ (at 1.18 mM) to the membrane fraction was dose-dependently displaced by unlabelled InsP $_4$ (Fig. 1). A 50% displacement of the labelled ligand was attained with 0.06 μ M-0.17 μ M, depending on the pH values. The binding was specific for InsP $_4$, since InsP $_3$ at 1 or 10 μ M displaced the binding by 23% or 38%, respectively, and inositol 1.3,4-trisphosphate was less potent (data not shown).

The specific binding activity was extremely sensitive to pH values as first described for porcine cerebellum by Donié et al. [18,19] (Fig. 2A), but the sensitivity was opposite that seen for [3H]InsP₃ binding [20], i.e., an alkaline pH favored the increased binding of [3H]InsP₃ [20]. Furthermore, the same phenomenon was observed for the Ca²⁺ dependence of [3H]InsP₄ binding (Fig. 2B). The specific binding at both pH 5.0 and 7.2 was increased by 3- to 5-fold by raising Ca²⁺ concentrations to 1 mM, the dependence of which also differed from that for [3H]InsP₃ binding [20]. Heparin was also effective in inhibiting the specific [3H]InsP₄ binding (Fig. 2C), as was the case with [3H]InsP₃ binding first reported by Worley et al. [20]. The concentrations

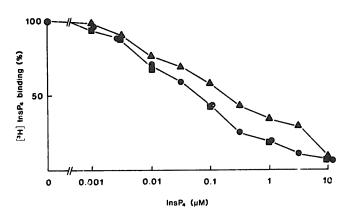


Fig. 1. Displacement of $[^3H]InsP_4$ from rat cerebellar membranes by $InsP_4$ at different pH values. Rat cerebellum microsomes were incubated with 1.2 nM $[^3H]InsP_4$ in the presence of various concentrations of unlabeled $InsP_4$ on ice for 15 min, at pH 8.3 (\blacksquare), 7.2 (\blacksquare) or 5.0 (\triangle), which were made with Tris-HCl, Hepes or Mes buffer, respectively. Non-specific binding was determined in the presence of 30 μ M unlabeled $InsP_4$, and was subtracted from the total binding in its absence to determine the specific binding. Each point is the mean of six, two or eight determinations at pH 8.3, 7.2 or 5.0, respectively.

required for the half-maximal inhibition (IC₅₀) varied, depending on the pH values, i.e., 1.7, 3 and 20 μ g/ml at pH 8.3, 7.2 and 5.0, respectively.

Effects of compounds containing the phosphorus moiety on the specific InsP₄ binding were then examined, as compared with those of [3 H]InsP₃ binding to the same tissue. As shown in Fig. 3A, ATP at concentrations ranging from 10–1000 μ M, inhibited the [3 H]InsP₄ binding with the IC₅₀ of 35 μ M, whereas [3 H]InsP₃ binding with the IC₅₀ of 1000 μ M was less sensitive. Although the assay conditions differed in pH value (5.0 vs. 8.3), this would not cause such a different sensitivity to ATP since the dose-dependence in the binding of [3 H]InsP₄ at pH 7.2 was much the same as that at pH 5.0. GTP and ATP were equipotent in inhibiting [3 H]InsP₄ binding, while ADP and AMP

were less potent, in this order, and adenosine up to 1 mM was ineffective (data not shown), thereby indicating that the phosphorus moiety is apparently responsible for the inhibition. Bisphosphoglyceric acid (BPG) range 0.1–10 mM, and pyrophosphate (PP_i) range 1–100 mM were effective in inhibiting the [³H]InsP₄ binding, but in this case, the potency in inhibition was much the same as that seen with [³H]InsP₃ binding (Fig. 3B).

Recognition of InsP₄ analogs by the binding sites

Two types of InsP₄ analog were synthesized. The structure of the compounds are shown in Fig. 4. Whether or not the synthetic InsP₄ analogs would compete with [³H]InsP₄ for the binding sites was examined using rat cerebellum membranes. As shown in

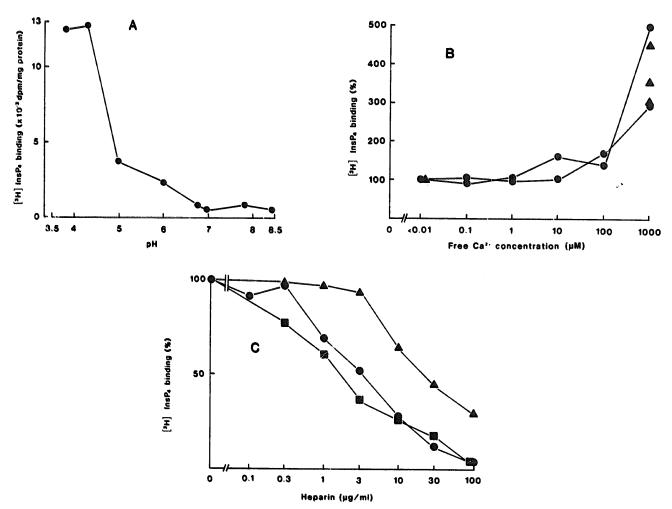


Fig. 2. Dependence of [³H]InsP₄ binding on pH (A), free Ca²+ concentration (B) and heparin (C). Rat cerebellum microsomes were incubated with 1.2 nM [³H]InsP₄ on ice for 15 min. Non-specific binding was determined in the presence of 30 μM unlabeled InsP₄, and was subtracted from the total binding in its absence to determine the specific binding. (A) pH-dependence. The specific binding was determined in 50 mM Mes buffer (pH 3.5-6), Hepes buffer (pH 6-8) or Tris-HCl buffer (pH 8-8.5). Each point is the mean of two determinations. (B) Ca²+-dependence. The specific binding was determined at various free Ca²+ concentrations at pH 7.2 (•) or 5.0 (•). In this case, EDTA concentration was reduced to 10 μM and EGTA at 2 mM was included. CaCl₂ was added to obtain the desired free Ca²+ concentration, under the assumption that the apparent affinity constant of EGTA for Ca²+ is 6.3·10⁶ M⁻¹ at pH 7.2. At pH 5.0, two determinations were made at 0 or 3 mM CaCl₂ in the presence of 2 mM EGTA, thus free Ca²+ concentration was not calculated. Each point is the mean of duplicate determinations. (C) Heparin-dependence. The specific binding was determined in the presence of various doses of heparin at pH 8.3 (■), 7.2 (•) or 5.0 (•). Each point is the mean of three determinations.

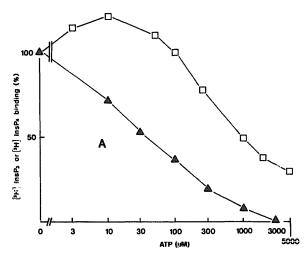


Fig. 3. Effects of ATP, BPG or PP_i on [³H]InsP₄ or [³H]InsP₃ binding. Rat cerebellum microsomes were incubated with either 1.2 nM [³H]InsP₄ at pH 5.0 or 0.98 nM [³H]InsP₃ at pH 8.3 on ice for 15 min. Non-specific binding was determined in the presence of 30 μM InsP₄ or 1 μM InsP₃, and subtracted from the total binding in its absence to determine the specific binding. (A) ATP-effect. Similar inhibition by ATP was also observed at pH 7.2. Each point is the mean of four determinations. (B) BPG- or PP_i-effect. Open symbols, BPG; closed symbols, PP_i. Δ, Δ: for [³H]InsP₄ binding, □, □: for InsP₃ binding. Each point is the mean of two determinations.

Fig. 5, the InsP₄ analogs were capable of inducing a dose-dependent displacement of [³H]InsP₄ from binding site(s). The potency in the displacement of KG194 was much the same as that of InsP₄, while KG210 was slightly less potent.

Discussion

We characterized [³H]InsP₄ binding in rat cerebellar membranes, the sites of which may be involved in function(s) not yet been well-defined.

The effects of pH and Ca²⁺ which were opposite to those seen with the [³H]InsP₃ binding, do not appear to be physiological relevant as they occur extremely deviated from physiological conditions. The sensitivity to ATP of the binding was greater than that of [³H]InsP₃ binding. In contrast, the sensitivities of

Fig. 4. Structures of synthetic InsP₄ analogs. The compounds are a racemic mixture.

[3H]InsP₄ binding to BPG, PP_i and heparin were equal to those of [3H]InsP₃ binding. The greater sensitivity to ATP and GTP, but not to BPG or PP, may be due to the alignment of three, but not two, phosphorus moieties. However, the observation that ADP also inhibited the [3H]InsP₄ binding more potently than did [³H]InsP₃ binding would make this proposal unlikely. Thus, adenosine or guanosine moieties in ATP or GTP, albeit ineffective by itself may also be responsible for the greater sensitivity. Theibert et al. [10] reported that ATP inhibited the [3H]InsP₄ binding to rat cerebellar membranes, with the IC₅₀ of 30 μ M at pH 8.5, that is the same as observed here at pH 5.0. On the other hand, Enyedi and Williams [21] reported that ATP at 100 μM or 1 mM only inhibited the [³H]InsP₄ binding to calf adrenal cortex membranes by 17% or 72%, respectively. Thus, the binding to peripheral tissues seems to be less sensitive to ATP.

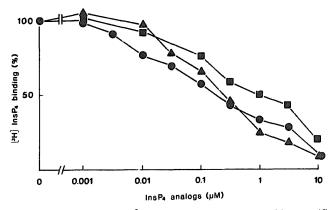


Fig. 5. Displacement of [³H]InsP₄ by InsP₄ analogs. The specific binding was determined in the presence of various doses of InsP₄ analogs at pH 5.0. △, KG194; Ⅲ, KG210; ♠, InsP₄. Each point is the mean of five or seven determinations for KG194 or KG210, respectively. Data with InsP₄ were re-plotted from Fig. 1. Similar results were obtained at pH 8.3.

The potencies of heparin and InsP₄ in inhibiting [³H]InsP₄ binding vary, depending on the pH values, i.e., a lower pH decreased the potencies. Change in electrical charges at a different pH in both proteins and inhibitors (heparin and InsP₄) can explain such differences. However, ATP and GTP, though their phosphorus moieties were required, were equally effective, regardless of the difference in pH values. We have no reasonable explanation on this point.

InsP₄ analogs with either an aminobenzoyl or an aminocyclohexanecarbonyl group on position 2 were capable of inhibiting the binding of [³H]InsP₄, with almost the same potencies as InsP₄. The result indicates that the 2-hydroxyl group may not be involved in the recognition by the binding sites, and furthermore bulky moieties such as a benzene or a cyclohexane ring on position 2 of InsP₄ would not sterically interfere with the recognition. Thus, the results suggest that the InsP₄ analogs may be linked to other molecules without loss of their biological activities through the substituent on the 2-position of InsP₄. Such a notion is being undertaken, by making InsP₄ affinity resins.

Acknowledgment

This work was supported in part by funding from the Uehara Memorial Foundation and Grant-in-Aid 03670126 for Scientific Research from the Ministry of Education, Science and Culture of Japan,

References

- 1 Berridge, M.J. and Irvine, R.F. (1984) Nature 312, 315-321.
- 2 Irvine, R.F., Letcher, A.J., Heslop, J.P. and Berridge, M.J. (1986) Nature 320, 631-634.

- 3 Irvine, R.F. and Moor, R.M. (1986) Biochem. J. 240, 917-920,
- 4 Higashida, H. and Brown, D.A. (1986) FEBS Lett. 208, 283-286.
- 5 Morris, A.P., Gallacher, D.V., Irvine, R.F. and Petersen, O.H. (1987) Nature 330, 653-655.
- 6 Zwiller, J., Ogasawara, E.M., Nakamoto, S.S. and Boynton, A.L. (1988) Biochem. Biophys. Res. Commun. 155, 767-772.
- 7 Hill, T.D., Dean, N.M. and Boynton, A.L. (1988) Science 242, 1176-1178.
- 8 Stauderman, K.A., Harris, G.D. and Lovenberg, W. (1988) Biochem, J. 255, 677-683,
- 9 Joseph, S.K., Hansen, C.A. and Williamson, J.R. (1989) Mol. Pharmacol. 36, 391-397.
- 10 Theibert, A.B., Supattapone, S., Worley, P.F., Baraban, J.M., Meek, J.L. and Synder, S.H. (1987) Biochem. Biophys. Res. Commun. 148, 1283–1289.
- 11 Brasiero, etc., and Irvine, R.F. (1987) Biochem. Biophys. Res. Commun. 149, 680-685.
- 12 Hirata, M., Watanabe, Y., Ishimatsu, T., Ikebe, T., Kimura, Y., Yamaguchi, K., Ozaki, S. and Koga, T. (1989) J. Biol. Chem. 264, 20303–20308.
- 13 Hirata, M., Yanaga, F., Koga, T., Ogasawara, T., Watanabe, Y. and Ozaki, S. (1990) J. Biol. Chem. 265, 8404–8407.
- 14 Hirata, M., Kimura, Y., Ishimatsu, T., Yanaga, F., Shuto, T., Sasaguri, T., Koga, T., Watanabe, Y. and Ozaki, S. (1991) Biochem. J. 276, 333-336.
- 15 Ozaki, S., Watanabe, Y., Ogasawara, T., Kondo, Y., Shiotani, N., Nishii, H. and Matsuki, T. (1986) Tetrahedron Lett. 27, 3157–3160.
- 16 Ozaki, S., Kondo, Y., Nakahira, H., Yamaoka, S. and Watanabe, Y. (1987) Tetrahedron Lett. 28, 4691–4694.
- 17 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- 18 Donié, F. and Reiser, G. (1989) FEBS Lett. 254, 155-158.
- 19 Donié, F., Hülser, E. and Reiser, G. (1990) FEBS Lett. 268, 194-138
- 20 Worley, P.F., Baraban, J.M., Supattapone, S., Wilson, V.S. and Snyder, S.H. (1987) J. Biol. Chem. 262, 12132–12136.
- 21 Enyedi, P. and Williams, G.H. (1988) J. Biol. Chem. 263, 7940–7942.